It is impossible to pass Cisco ccnp tshoot 300 135 pdf exam without any help in the short term. Come to Pass4sure soon and find the most advanced, correct and guaranteed Cisco 300 135 tshoot pdf practice questions. You will get a surprising result by our Update Troubleshooting and Maintaining Cisco IP Networks (TSHOOT) practice guides.
Q1. - (Topic 4)
Scenario:
You have been asked by your customer to help resolve issues in their routed network. Their network engineer has deployed HSRP. On closer inspection HSRP doesn't appear to be operating properly and it appears there are other network problems as well. You are to provide solutions to all the network problems.
You have received notification from network monitoring system that link between R1 and R5 is down and you noticed that the active router for HSRP group 1 has not failed over to the standby router for group 1. You are required to troubleshoot and identify the issue.
A. There is an HSRP group track command misconfiguration
B. There is an HSRP group priority misconfiguration
C. There is an HSRP authentication misconfiguration
D. There is an HSRP group number mismatch
E. This is not an HSRP issue; this is routing issue.
Answer: A
Explanation:
When looking at the HSRP configuration of R1, we see that tracking has been enabled, but that it is not tracking the link to R5, only the link to R2:
R1 should be tracking the Eth 0/1 link, not 0/0 to achieve the desired affect/
Q2. - (Topic 17)
The implementations group has been using the test bed to do a ‘proof-of-concept'
that requires both Client 1 and Client 2 to access the WEB Server at 209.65.200.241. After several changes to the network addressing, routing schemes, DHCP services, NTP services, layer 2 connectivity, FHRP services, and device security, a trouble ticket has been opened DSW1 will not become the active router for HSRP group 10.
Use the supported commands to isolated the cause of this fault and answer the following questions.
The fault condition is related to which technology?
A. NTP
B. HSRP
C. IP DHCP Helper
D. IPv4 EIGRP Routing
E. IPv6 RIP Routing
F. IPv4 layer 3 security
G. Switch-to-Switch Connectivity
H. Loop Prevention
I. Access Vlans
Answer: B
Explanation:
On DSW1, related to HSRP, under VLAN 10 change the given track 1 command to instead use the track 10 command.
Q3. - (Topic 20)
The implementation group has been using the test bed to do an IPv6 'proof-of-concept1.
After several changes to the network addressing and routing schemes, a trouble ticket has been opened indicating that the loopback address on R1 (2026::111:1) is not able to ping the loopback address on DSW2 (2026::102:1).
Use the supported commands to isolate the cause of this fault and answer the following question.
On which device is the fault condition located?
A. R1
B. R2
C. R3
D. R4
E. DSW1
F. DSW2
G. ASW1
H. ASW2
Answer: D
Explanation:
Start to troubleshoot this by pinging the loopback IPv6 address of DSW2 (2026::102:1). This can be pinged from DSW1, and R4, but not R3 or any other devices past that point. If we look at the diagram, we see that R4 is redistributing the OSPF and RIP IPV6 routes. However, looking at the routing table we see that R4 has the 2026::102 network in the routing table known via RIP, but that R3 does not have the route:
When we look more closely at the configuration of R4, we see that it is redistributing OSPF routes into RIP for IPv6, but the RIP routes are not being redistributed into OSPF. That is why R3 sees R4 as an IPV6 OSPF neighbor, but does not get the 2026::102 network installed.
So, problem is with route redistribution on R4.
Q4. - (Topic 21)
The implementation group has been using the test bed to do an IPv6 'proof-of-concept1. After several changes to the network addressing and routing schemes, a trouble ticket has been opened indicating that the loopback address on R1 (2026::111:1) is not able to ping the loopback address on DSW2 (2026::102:1).
The fault condition is related to which technology?
A. NTP
B. IPv4 OSPF Routing
C. IPv6 OSPF Routing
D. IPV4 and IPV6 Interoperability
E. IPv4 layer 3 security
Answer: D
Explanation:
Answer: D
As explained earlier, the problem is with route misconfigured tunnel modes on R3. R3 is using tunnel mode ipv6, while R4 is using the default of GRE.
Q5. - (Topic 9)
The implementations group has been using the test bed to do a ‘proof-of-concept' that requires both Client 1 and Client 2 to access the WEB Server at 209.65.200.241. After several changes to the network addressing, routing scheme, DHCP services, NTP services, layer 2 connectivity, FHRP services, and device security, a trouble ticket has been opened indicating that Client 1 cannot ping the 209.65.200.241 address.
Use the supported commands to isolated the cause of this fault and answer the following questions.
What is the solution to the fault condition?
A. Under the BGP process, enter the bgp redistribute-internal command.
B. Under the BGP process, bgp confederation identifier 65001command.
C. Deleted the current BGP process and reenter all of the command using 65002 as the AS number.
D. Under the BGP process, delete the neighbor 209.56.200.226 remote-as 65002 command and enter the neighbor 209.65.200.226 remote-as 65002 command.
Answer: D
Explanation:
On R1 under router BGP change neighbor 209.56.200.226 remote-as 65002 statement to neighbor 209.65.200.226 remote-as 65002
Topic 10, Ticket 5 : NAT ACL
Topology Overview (Actual Troubleshooting lab design is for below network design)
. Client Should have IP 10.2.1.3
. EIGRP 100 is running between switch DSW1 & DSW2
. OSPF (Process ID 1) is running between R1, R2, R3, R4
. Network of OSPF is redistributed in EIGRP
. BGP 65001 is configured on R1 with Webserver cloud AS 65002
. HSRP is running between DSW1 & DSW2 Switches
The company has created the test bed shown in the layer 2 and layer 3 topology exhibits.
This network consists of four routers, two layer 3 switches and two layer 2 switches.
In the IPv4 layer 3 topology, R1, R2, R3, and R4 are running OSPF with an OSPF process number 1.
DSW1, DSW2 and R4 are running EIGRP with an AS of 10. Redistribution is enabled where necessary.
R1 is running a BGP AS with a number of 65001. This AS has an eBGP connection to AS 65002 in the ISP's network. Because the company's address space is in the private range.
R1 is also providing NAT translations between the inside (10.1.0.0/16 & 10.2.0.0/16) networks and outside (209.65.0.0/24) network.
ASW1 and ASW2 are layer 2 switches.
NTP is enabled on all devices with 209.65.200.226 serving as the master clock source.
The client workstations receive their IP address and default gateway via R4's DHCP server.
The default gateway address of 10.2.1.254 is the IP address of HSRP group 10 which is running on DSW1 and DSW2.
In the IPv6 layer 3 topology R1, R2, and R3 are running OSPFv3 with an OSPF process number 6.
DSW1, DSW2 and R4 are running RIPng process name RIP_ZONE.
The two IPv6 routing domains, OSPF 6 and RIPng are connected via GRE tunnel running over the underlying IPv4 OSPF domain. Redistrution is enabled where necessary.
Recently the implementation group has been using the test bed to do a ‘proof-of-concept' on several implementations. This involved changing the configuration on one or more of the devices. You will be presented with a series of trouble tickets related to issues introduced
during these configurations.
Note: Although trouble tickets have many similar fault indications, each ticket has its own issue and solution.
Each ticket has 3 sub questions that need to be answered & topology remains same.
Question-1 Fault is found on which device,
Question-2 Fault condition is related to,
Question-3 What exact problem is seen & what needs to be done for solution
Client is unable to ping IP 209.65.200.241
Solution
Steps need to follow as below:-
. When we check on client 1 & Client 2 desktop we are not receiving DHCP address from R4
Ipconfig ----- Client will be receiving IP address 10.2.1.3
. IP 10.2.1.3 will be able to ping from R4 , R3, R2, R1
. Look for BGP Neighbourship
Sh ip bgp summary ----- State of BGP will be in established state & will be able to receive I prefix (209.65.200.241)
. As per troubleshooting we are able to ping ip 10.2.1.3 from R1 & BGP is also receiving prefix of webserver & we are able to ping the same from R1. Further troubleshooting needs to be done on R1 on serial 0/0/1
. Check for running config. i.e sh run for interface serial 0/0/1..
!
!
From above snapshot we are able to see that IP needs to be PAT to serial 0/0/1 to reach web server IP (209.65.200.241). But in access-list of NAT IP allowed IP is 10.1.0.0/16 is allowed & need 10.2.0.0 /16 to
. As per troubleshooting we are able to ping ip 10.2.1.3 from R1 & BGP is also receiving prefix of web server & we are able to ping the same from R1. Its should be checked further for running config of interface for stopping
. Change required: On R1 we need to add the client IP address for reachability to server to the access list that is used to specify which hosts get NATed.
Q6. - (Topic 5)
Scenario: A customer network engineer has edited their OSPF network configuration and now your customer is experiencing network issues. They have contacted you to resolve the issues and return the network to full functionality.
The 6.6.0.0 subnets are not reachable from R4. how should the problem be resolved?
A. Edit access-list 46 in R6 to permit all the 6.6.0.0 subnets
B. Apply access-list 46 in R6 to a different interface
C. Apply access-list 1 as a distribute-list out under router ospf 100 in R4
D. Remove distribute-list 64 out on R6 E. Remove distribute-list 1 in ethernet 0/1 in R4
F. Remove distribute-list 1 in ethernet 0/0 in R4
Answer: D
Explanation:
Here we see from the running configuration of R6 that distribute list 64 is being used in the outbound direction to all OSPF neighbors.
However, no packets will match the 6.6.0.0 in this access list because the first line blocks all 6.0.0.0 networks, and since the 6.6.0.0 networks will also match the first line of this ACL, these OSPF networks will not be advertised because they are first denied in the first line of the ACL.
Q7. - (Topic 20)
The implementation group has been using the test bed to do an IPv6 'proof-of-concept1. After several changes to the network addressing and routing schemes, a trouble ticket has been opened indicating that the loopback address on R1 (2026::111:1) is not able to ping the loopback address on DSW2 (2026::102:1).
Use the supported commands to isolate the cause of this fault and answer the following question.
What is the solution to the fault condition?
A. Under the interface Tunnel34 configuration enter the ipv6 ospf 6 area 34 command.
B. Under the interface Loopback6 configuration enter the ipv6 ospf 6 area 34 command.
C. Under the interface Serial0/0/0.34 configuration enter the ipv6 ospf 6 area 34 command.
D. Under ipv6 router ospf 6 configuration enter the redistribute rip RIP_ZONE include-connected command.
Answer: D
Explanation:
As explained earlier, the problem is with route redistribution on R4 of not redistributing RIP routes into OSPF for IPV6.
Topic 21, Ticket 16: IPv6 Routing Issue 3
Topology Overview (Actual Troubleshooting lab design is for below network design)
-Client Should have IP 10.2.1.3
-EIGRP 100 is running between switch DSW1 & DSW2
-OSPF (Process ID 1) is running between R1, R2, R3, R4
-Network of OSPF is redistributed in EIGRP
-BGP 65001 is configured on R1 with Webserver cloud AS 65002
-HSRP is running between DSW1 & DSW2 Switches
The company has created the test bed shown in the layer 2 and layer 3 topology exhibits.
This network consists of four routers, two layer 3 switches and two layer 2 switches.
In the IPv4 layer 3 topology, R1, R2, R3, and R4 are running OSPF with an OSPF process number 1.
DSW1, DSW2 and R4 are running EIGRP with an AS of 10. Redistribution is enabled where necessary.
R1 is running a BGP AS with a number of 65001. This AS has an eBGP connection to AS 65002 in the ISP's network. Because the company's address space is in the private range.
R1 is also providing NAT translations between the inside (10.1.0.0/16 & 10.2.0.0/16) networks and outside (209.65.0.0/24) network.
ASW1 and ASW2 are layer 2 switches.
NTP is enabled on all devices with 209.65.200.226 serving as the master clock source.
The client workstations receive their IP address and default gateway via R4's DHCP server.
The default gateway address of 10.2.1.254 is the IP address of HSRP group 10 which is running on DSW1 and DSW2.
In the IPv6 layer 3 topology R1, R2, and R3 are running OSPFv3 with an OSPF process number 6.
DSW1, DSW2 and R4 are running RIPng process name RIP_ZONE.
The two IPv6 routing domains, OSPF 6 and RIPng are connected via GRE tunnel running over the underlying IPv4 OSPF domain. Redistrution is enabled where necessary.
Recently the implementation group has been using the test bed to do a ‘proof-of-concept' on several implementations. This involved changing the configuration on one or more of the devices.
You will be presented with a series of trouble tickets related to issues introduced during these configurations.
Note: Although trouble tickets have many similar fault indications, each ticket has its own issue and solution.
Each ticket has 3 sub questions that need to be answered & topology remains same.
Question-1 Fault is found on which device,
Question-2 Fault condition is related to,
Question-3 What exact problem is seen & what needs to be done for solution
===============================================================================
Q8. - (Topic 4)
Scenario:
You have been asked by your customer to help resolve issues in their routed network. Their network engineer has deployed HSRP. On closer inspection HSRP doesn't appear to be operating properly and it appears there are other network problems as well. You are to provide solutions to all the network problems.
Examine the configuration on R5. Router R5 do not see any route entries learned from R4; what could be the issue?
A. HSRP issue between R5 and R4
B. There is an OSPF issue between R5and R4
C. There is a DHCP issue between R5 and R4
D. The distribute-list configured on R5 is blocking route entries
E. The ACL configured on R5 is blocking traffic for the subnets advertised from R4.
Answer: B
Explanation:
If we issue the "show ip route" and "show ip ospf neighbor" commands on R5, we see that there are no learned OSPF routes and he has no OSPF neighbors.
Q9. - (Topic 17)
The implementations group has been using the test bed to do a ‘proof-of-concept' that requires both Client 1 and Client 2 to access the WEB Server at 209.65.200.241. After several changes to the network addressing, routing schemes, DHCP services, NTP services, layer 2 connectivity, FHRP services, and device security, a trouble ticket has been opened DSW1 will not become the active router for HSRP group 10.
Use the supported commands to isolated the cause of this fault and answer the following questions.
What is the solution to the fault condition?
A. Under the interface vlan 10 configuration enter standby 10 preempt command.
B. Under the track 1 object configuration delete the threshold metric up 1 down 2 command and enter the threshold metric up 61 down 62 command.
C. Under the track 10 object configuration delete the threshold metric up 61 down 62 command and enter the threshold metric up 1 down 2 command.
D. Under the interface vlan 10 configuration delete the standby 10 track1 decrement 60 command and enter the standby 10 track 10 decrement 60 command.
Answer: D
Explanation:
On DSW1, related to HSRP, under VLAN 10 change the given track 1 command to instead use the track 10 command.
Q10. - (Topic 12)
The implementations group has been using the test bed to do a ‘proof-of-concept' that requires both Client 1 and Client 2 to access the WEB Server at 209.65.200.241. After several changes to the network addressing, routing scheme, DHCP services, NTP services, layer 2 connectivity, FHRP services, and device security, a trouble ticket has been opened indicating that Client 1 cannot ping the 209.65.200.241 address.
Use the supported commands to isolated the cause of this fault and answer the following questions.
What is the solution to the fault condition?
A. In Configuration mode, using the interface range Fa 1/0/1 – 2, then no switchport port-security interface configuration commands. Then in exec mode clear errdisable interface fa 1/01 – 2 vlan 10 command
B. In Configuration mode, using the interface range Fa 1/0/1 – 2, then no switchport port-security, followed by shutdown, no shutdown interface configuration commands.
C. In Configuration mode, using the interface range Fa 1/0/1 – 2, then no switchport port-security interface configuration commands.
D. In Configuration mode, using the interface range Fa 1/0/1 – 2, then no switchport port-security interface configuration commands. Then in exec mode clear errdisable interface fa 1/0/1, then clear errdisable interface fa 1/0/2 commands.
Answer: B
Explanation:
On ASW1, we need to remove port-security under interface fa1/0/1 & fa1/0/2.
Reference: http://www.cisco.com/en/US/tech/ABC389/ABC621/technologies_tech_note09186a00806c d87b.shtml