Q51. Refer to the exhibit. 

Which statement is true? 

A. Traffic from the 172.16.0.0/16 network will be blocked by the ACL. 

B. The 10.0.0.0/8 network will not be advertised by Router B because the network statement for the 10.0.0.0/8 network is missing from Router B. 

C. The 10.0.0.0/8 network will not be in the routing table on Router B. 

D. Users on the 10.0.0.0/8 network can successfully ping users on the 192.168.5.0/24 network, but users on the 192.168.5.0/24 cannot successfully ping users on the 10.0.0.0/8 network. 

E. Router B will not advertise the 10.0.0.0/8 network because it is blocked by the ACL. 

Answer:

Explanation: 


Q52. An organization decides to implement NetFlow on its network to monitor the fluctuation of traffic that is disrupting core services. After reviewing the output of NetFlow, the network engineer is unable to see OUT traffic on the interfaces. What can you determine based on this information? 

A. Cisco Express Forwarding has not been configured globally. 

B. NetFlow output has been filtered by default. 

C. Flow Export version 9 is in use. 

D. The command ip flow-capture fragment-offset has been enabled. 

Answer:

Explanation: 

We came across a recent issue where a user setup a router for NetFlow export but was unable to see the

OUT traffic for the interfaces in NetFlow Analyzer. Every NetFlow configuration aspect was checked and

nothing incorrect was found. That is when we noticed the `no ip cef' command on the router. CEF was

enabled at the global level and within seconds, NetFlow Analyzer started showing OUT traffic for the

interfaces. This is why this topic is about Cisco Express Forwarding.

What is switching?

A Router must make decisions about where to forward the packets passing through. This decision-making

process is called "switching". Switching is what a router does when it makes the following decisions:

1.Whether to forward or not forward the packets after checking that the destination for the packet is

reachable.

2.If the destination is reachable, what is the next hop of the router and which interface will the router use to

get to that destination.

What is CEF?

CEF is one of the available switching options for Cisco routers. Based on the routing table, CEF creates its

own table, called the Forwarding Information Base (FIB). The FIB is organized differently than the routing

table and CEF uses the FIB to decide which interface to send traffic from. CEF offers the following

benefits:

1.Better performance than fast-switching (the default) and takes less CPU to perform the same task.

2.When enabled, allows for advanced features like NBAR

3.Overall, CEF can switch traffic faster than route-caching using fast-switching

How to enable CEF?

CEF is disabled by default on all routers except the 7xxx series routers. Enabling and Disabling CEF is

easy. To enable CEF, go into global configuration mode and

enter the CEF command.

Router# config t

Router(config)# ip cef

Router(config)#

To disable CEF, simply use the `no' form of the command, ie. `no ip cef`.

Why CEF Needed when enabling NetFlow ?

CEF is a prerequisite to enable NetFlow on the router interfaces. CEF decides through which interface

traffic is exiting the router. Any NetFlow analyzer product will calculate the OUT traffic for an interface

based on the Destination Interface value present in the NetFlow packets exported from the router. If the

CEF is disabled on the router, the NetFlow packets exported from the router will have "Destination

interface" as "null" and this leads NetFlow Analyzer to show no OUT traffic for the interfaces. Without

enabling the CEF on the router, the NetFlow packets did not mark the destination interfaces and so

NetFlow Analyzer was not able to show the OUT traffic for the interfaces. Reference: https://

blogs.manageengine.com/network-2/netflowanalyzer/2010/05/19/need-for-cef- in-netflow-data-export.html


Q53. Which NetFlow component is applied to an interface and collects information about flows? 

A. flow monitor 

B. flow exporter 

C. flow sampler 

D. flow collector 

Answer:

Explanation: 

Flow monitors are the NetFlow component that is applied to interfaces to perform network

traffic monitoring. Flow monitors consist of a record and a cache. You add the record to the flow monitor

after you create the flow monitor. The flow monitor cache is automatically created at the time the flow

monitor is applied to the first interface. Flow data is collected from the network traffic during the monitoring

process based on the key and nonkey fields in the record, which is configured for the flow monitor and

stored in the flow monitor cache. Reference: http://www.cisco.com/c/en/us/td/docs/ios/fnetflow/command/

reference/fnf_book/fnf_01.html#w p1314030


Q54. A router receives a routing advertisement for the same prefix and subnet from four different routing protocols. Which advertisement is installed in the routing table? 

A. RIP 

B. OSPF 

C. iBGP 

D. EIGRP 

Answer:

Explanation: 


Q55. After a recent DoS attack on a network, senior management asks you to implement better logging functionality on all IOS-based devices. Which two actions can you take to provide enhanced logging results? (Choose two.) 

A. Use the msec option to enable service time stamps. 

B. Increase the logging history . 

C. Set the logging severity level to 1. 

D. Specify a logging rate limit. 

E. Disable event logging on all noncritical items. 

Answer: A,B 

Explanation: 

The optional msec keyword specifies the date/time format should include milliseconds. This can aid in

pinpointing the exact time of events, or to correlate the order that the events happened. To limit syslog messages sent to the router's history table and to an SNMP network management station based on severity, use the logging history command in global configuration mode. By default, Cisco devices Log error messages of severity levels 0 through 4 (emergency, alert, critical, error, and warning levels); in other words, "saving level warnings or higher." By increasing the severity level, more granular monitoring can occur, and SNMP messages will be sent by the less sever (5-7) messages.


Q56. CORRECT TEXT 

JS Industries has expanded their business with the addition of their first remote office. The remote office router (R3) was previously configured and all corporate subnets were reachable from R3. JS Industries is interested in using route summarization along with the EIGRP Stub Routing feature to increase network stability while reducing the memory usage and bandwidth utilization to R3. Another network professional was tasked with implementing this solution. However, in the process of configuring EIGRP stub routing connectivity with the remote network devices off of R3 has been lost. 

Currently EIGRP is configured on all routers R2, R3, and R4 in the network. Your task is to identify and resolve the cause of connectivity failure with the remote office router R3. Once the issue has been resolved you should complete the task by configuring route summarization only to the remote office router R3. 

You have corrected the fault when pings from R2 to the R3 LAN interface are successful, and the R3 IP routing table only contains 2 10.0.0.0 subnets. 

Answer: Here are the solution as below: 

Explanation: 

First we have to figure out why R3 and R4 can not communicate with each other. Use the show running-config command on router R3. 

Notice that R3 is configured as a stub receive-only router. The receive-only keyword will restrict the router from sharing any of its routes with any other router in that EIGRP autonomous system. This keyword will also prevent any type of route from being sent. Therefore we will remove this command and replace it with the eigrp stub command: 

R3# configure terminal 

R3(config)# router eigrp 123 

R3(config-router)# no eigrp stub receive-only 

R3(config-router)# eigrp stub 

R3(config-router)# end 

Now R3 will send updates containing its connected and summary routes to other routers. Notice that the eigrp stub command equals to the eigrp stub connected summary because the connected and summary options are enabled by default. Next we will configure router R3 so that it has only 2 subnets of 10.0.0.0 network. Use the show ip route command on R3 to view its routing table: 

Because we want the routing table of R3 only have 2 subnets so we have to summary sub-networks at the interface which is connected with R3, the s0/0 interface of R4. 

There is one interesting thing about the output of the show ip route shown above: the 10.2.3.0/24, which is a directly connected network of R3. We can’t get rid of it in the routing table no matter what technique we use to summary the networks. Therefore, to make the routing table of R3 has only 2 subnets we have to summary other subnets into one subnet. 

In the output if we don’t see the summary line (like 10.0.0.0/8 is a summary…) then we should use the command ip summary-address eigrp 123 10.2.0.0 255.255.0.0 so that all the ping can work well. 

In conclusion, we will use the ip summary-address eigrp 123 10.2.0.0 255.255.0.0 at the interface s0/0 of R4 to summary. 

R4> enable 

R4# conf t 

R4(config)# interface s0/0 

R4(config-if)# ip summary-address eigrp 123 10.2.0.0 255.255.0.0 

Now we jump back to R3 and use the show ip route command to verify the effect, the output is shown below: 

Note: Please notice that the IP addresses and the subnet masks in your real exam might be different so you might use different ones to solve this question. Just for your information, notice that if you use another network than 10.0.0.0/8 to summary, for example, if you use the command ip summary-address eigrp 123 10.2.0.0 255.255.0.0 you will leave a /16 network in the output of the show ip route command. 

But in your real exam, if you don’t see the line "10.0.0.0/8 is a summary, Null0" then you can summarize using the network 10.2.0.0/16. This summarization is better because all the pings can work well. Finally don’t forget to use the copy run start command on routers R3 and R4 to save the configurations. R3(config-if)# end R3# copy run start R4(config-if)# end R4# copy run start 

If the “copy run start” command doesn’t work then use “write memory.” 


Q57. Refer to the following output: 

Router#show ip nhrp detail 

10.1.1.2/8 via 10.2.1.2, Tunnel1 created 00:00:12, expire 01:59:47 

TypE. dynamic, Flags: authoritative unique nat registered used 

NBMA address: 10.12.1.2 

What does the authoritative flag mean in regards to the NHRP information? 

A. It was obtained directly from the next-hop server. 

B. Data packets are process switches for this mapping entry. 

C. NHRP mapping is for networks that are local to this router. 

D. The mapping entry was created in response to an NHRP registration request. 

E. The NHRP mapping entry cannot be overwritten. 

Answer:

Explanation: 

Show NHRP: Examples

The following is sample output from the show ip nhrp command:

Router# show ip nhrp

10.0.0.2 255.255.255.255, tunnel 100 created 0:00:43 expire 1:59:16 Type: dynamic Flags: authoritative

NBMA address: 10.1111.1111.1111.1111.1111.1111.1111.1111.1111.11 10.0.0.1 255.255.255.255,

Tunnel0 created 0:10:03 expire 1:49:56 Type: static Flags: authoritative NBMA address: 10.1.1.2 The

fields in the sample display are as follows:

The IP address and its network mask in the IP-to-NBMA address cache. The mask is always

255.255.255.255 because Cisco does not support aggregation of NBMA information through NHRP.

The interface type and number and how long ago it was created (hours:minutes:seconds).

The time in which the positive and negative authoritative NBMA address will expire

(hours:minutes:seconds). This value is based on the ip nhrp holdtime

command.

Type of interface:

dynamic--NBMA address was obtained from the NHRP Request packet.

static--NBMA address was statically configured.

Flags:

authoritative--Indicates that the NHRP information was obtained from the Next Hop Server or router that

maintains the NBMA-to-IP address mapping for a particular destination. Reference: http://www.cisco.com/

c/en/us/td/docs/ios/12_4/ip_addr/configuration/guide/hadnhrp.html


Q58. You have been asked to evaluate how EIGRP is functioning in a customer network. 

What percent of R1’s interfaces bandwidth is EIGRP allowed to use? 

A. 10 

B. 20 

C. 30 

D. 40 

Answer:

Explanation: 


Q59. A network engineer is configuring a solution to allow failover of HSRP nodes during maintenance windows, as an alternative to powering down the active router and letting the network respond accordingly. Which action will allow for manual switching of HSRP nodes? 

A. Track the up/down state of a loopback interface and shut down this interface during maintenance. 

B. Adjust the HSRP priority without the use of preemption. 

C. Disable and enable all active interfaces on the active HSRP node. 

D. Enable HSRPv2 under global configuration, which allows for maintenance mode. 

Answer:

Explanation: 

The standby track command allows you to specify another interface on the router for the

HSRP process to monitor in order to alter the HSRP priority for a given group. If the line protocol of the

specified interface goes down, the HSRP priority is reduced. This means that another HSRP router with

higher priority can become the active router if that router has standby preempt enabled. Loopback

interfaces can be tracked, so when this interface is shut down the HSRP priority for that router will be

lowered and the other HSRP router will then become the active one. Reference: http://www.cisco.com/c/

en/us/support/docs/ip/hot-standby-router-protocol- hsrp/13780-6.html


Q60. Which three problems result from application mixing of UDP and TCP streams within a network with no QoS? (Choose three.) 

A. starvation 

B. jitter 

C. latency 

D. windowing 

E. lower throughput 

Answer: A,C,E 

Explanation: 

It is a general best practice not to mix TCP-based traffic with UDP-based traffic (especially

streaming video) within a single service provider class due to the behaviors of these protocols during

periods of congestion. Specifically, TCP transmitters will throttle-back flows when drops have been

detected. Although some UDP applications have application-level windowing, flow control, and

retransmission capabilities, most UDP transmitters are completely oblivious to drops and thus never lower

transmission rates due to dropping. When TCP flows are combined with UDP flows in a single service

provider class and the class experiences congestion, then TCP flows will continually lower their rates,

potentially giving up their bandwidth to drop-oblivious UDP flows. This effect is called TCP-starvation/

UDP-dominance. This can increase latency and lower the overall throughput. TCP-starvation/UDPdominance

likely occurs if (TCP-based) mission-critical data is assigned to the same service provider class

as (UDP-based) streaming video and the class experiences sustained congestion. Even if WRED is

enabled on the service provider class, the same behavior would be observed, as WRED (for the most part)

only affects TCP-based flows. Granted, it is not always possible to separate TCP-based flows from UDPbased

flows, but it is beneficial to be aware of this behavior when making such application-mixing

decisions. Reference: http://www.cisco.com/warp/public/cc/so/neso/vpn/vpnsp/spqsd_wp.htm